跳转到内容

皮索特-维贾亚拉加文数

维基百科,自由的百科全书

皮索特-维贾亚拉加文数Pisot–Vijayaraghavan number,简称皮索数PV数)是指一大于1的实数代数整数,且其共轭代数数的绝对值小于1。皮索数是在1912年由数学家阿克塞尔·图厄发现,后来1919年戈弗雷·哈罗德·哈代在研究丢番图逼近时再度发现皮索数,但一直到1938年查理·皮索特英语Charles Pisot的论文发表后,皮索数才广为人所知道。数学家维贾亚拉加文英语Tirukkannapuram Vijayaraghavan拉斐尔·塞勒姆英语Raphael Salem在1940年代有相关的研究,塞勒姆数英语Salem number的概念就类似皮索数。

皮索数一个广为人知的特性就是其高次方以指数方式趋近整数。皮索特证明了以下的定理:若α > 1为一实数使以下数列

平方可求和(square-summable)或2(其中||x||表示一实数x和最接近整数之间的距离),则α为皮索数(也是一代数整数)。依照皮索数的这一个特性,塞勒姆证明所有皮索数形成的集合S为一闭集合。其最小元素为一个包括三次方根的无理数,称为塑胶数。对于皮索数集合S极限点有较多的了解,其中最小的元素就是黄金比例

定义及性质

[编辑]

一个代数度n的代数整数是指一个n不可约英语irreducible polynomial整系数首一多项式P(x)的根αP(x)即为α最小多项式,其他的根则为α的共轭数。若 α > 1,且P(x)的其他根皆为绝对值小于1的实数或复数,都在复数平面中|x| = 1的单位圆盘中,则α就称为皮索特-维贾亚拉加文数、皮索数或PV数。例如黄金比例φ ≈ 1.618为一个大于一的实代数整数,其共轭数−φ−1 ≈ −0.618小于1,因此φ为一皮索数,其最小多项式为x2x − 1。

参考资料

[编辑]

外部链接

[编辑]