椭球坐标系: a=1,b=0.8,c=0.6, λ=-0.1 红色椭球, μ=-0.5 蓝色单叶双曲面, ν=-0.8 品红色双叶双曲面.
椭球坐标系 (英语:Ellipsoidal coordinates )是一种三维正交坐标系 ,是椭圆坐标系 的推广。与大多数的三维正交坐标系 的生成方法不同,椭球坐标系不是由任何二维正交坐标系延伸或旋转生成的。
椭球坐标
(
λ
,
μ
,
ν
)
{\displaystyle (\lambda ,\ \mu ,\ \nu )}
以直角坐标
(
x
,
y
,
z
)
{\displaystyle (x,\ y,\ z)}
定义为:
x
2
=
(
a
2
+
λ
)
(
a
2
+
μ
)
(
a
2
+
ν
)
(
a
2
−
b
2
)
(
a
2
−
c
2
)
{\displaystyle x^{2}={\frac {(a^{2}+\lambda )(a^{2}+\mu )(a^{2}+\nu )}{(a^{2}-b^{2})(a^{2}-c^{2})}}}
、
y
2
=
(
b
2
+
λ
)
(
b
2
+
μ
)
(
b
2
+
ν
)
(
b
2
−
a
2
)
(
b
2
−
c
2
)
{\displaystyle y^{2}={\frac {(b^{2}+\lambda )(b^{2}+\mu )(b^{2}+\nu )}{(b^{2}-a^{2})(b^{2}-c^{2})}}}
、
z
2
=
(
c
2
+
λ
)
(
c
2
+
μ
)
(
c
2
+
ν
)
(
c
2
−
b
2
)
(
c
2
−
a
2
)
{\displaystyle z^{2}={\frac {(c^{2}+\lambda )(c^{2}+\mu )(c^{2}+\nu )}{(c^{2}-b^{2})(c^{2}-a^{2})}}}
;
其中,椭球坐标遵守以下限制:
−
λ
<
c
2
<
−
μ
<
b
2
<
−
ν
<
a
2
{\displaystyle -\lambda <c^{2}<-\mu <b^{2}<-\nu <a^{2}}
。
椭球上的与双曲面相交的曲线,a=1, b=0.8, c=0.6.
λ
{\displaystyle \lambda }
-坐标曲面是椭球面 :
x
2
a
2
+
λ
+
y
2
b
2
+
λ
+
z
2
c
2
+
λ
=
1
{\displaystyle {\frac {x^{2}}{a^{2}+\lambda }}+{\frac {y^{2}}{b^{2}+\lambda }}+{\frac {z^{2}}{c^{2}+\lambda }}=1}
。
μ
{\displaystyle \mu }
-坐标曲面是单叶双曲面 (hyperboloid of one sheet ) :
x
2
a
2
+
μ
+
y
2
b
2
+
μ
+
z
2
c
2
+
μ
=
1
{\displaystyle {\frac {x^{2}}{a^{2}+\mu }}+{\frac {y^{2}}{b^{2}+\mu }}+{\frac {z^{2}}{c^{2}+\mu }}=1}
。
ν
{\displaystyle \nu }
-坐标曲面是双叶双曲面 (hyperboloid of two sheet ) :
x
2
a
2
+
ν
+
y
2
b
2
+
ν
+
z
2
c
2
+
ν
=
1
{\displaystyle {\frac {x^{2}}{a^{2}+\nu }}+{\frac {y^{2}}{b^{2}+\nu }}+{\frac {z^{2}}{c^{2}+\nu }}=1}
。
为了简化标度因子的计算,设定函数
S
(
σ
)
=
d
e
f
(
a
2
+
σ
)
(
b
2
+
σ
)
(
c
2
+
σ
)
{\displaystyle S(\sigma )\ {\stackrel {\mathrm {def} }{=}}\ (a^{2}+\sigma )(b^{2}+\sigma )(c^{2}+\sigma )}
;
其中,参数
σ
{\displaystyle \sigma }
可以代表任何一个椭球坐标
(
λ
,
μ
,
ν
)
{\displaystyle (\lambda ,\ \mu ,\ \nu )}
。
椭球坐标的标度因子分别为
h
λ
=
1
2
(
λ
−
μ
)
(
λ
−
ν
)
S
(
λ
)
{\displaystyle h_{\lambda }={\frac {1}{2}}{\sqrt {\frac {(\lambda -\mu )(\lambda -\nu )}{S(\lambda )}}}}
、
h
μ
=
1
2
(
μ
−
λ
)
(
μ
−
ν
)
S
(
μ
)
{\displaystyle h_{\mu }={\frac {1}{2}}{\sqrt {\frac {(\mu -\lambda )(\mu -\nu )}{S(\mu )}}}}
、
h
ν
=
1
2
(
ν
−
λ
)
(
ν
−
μ
)
S
(
ν
)
{\displaystyle h_{\nu }={\frac {1}{2}}{\sqrt {\frac {(\nu -\lambda )(\nu -\mu )}{S(\nu )}}}}
。
无穷小体积元素等于
d
V
=
(
λ
−
μ
)
(
λ
−
ν
)
(
μ
−
ν
)
8
−
S
(
λ
)
S
(
μ
)
S
(
ν
)
d
λ
d
μ
d
ν
{\displaystyle dV={\frac {(\lambda -\mu )(\lambda -\nu )(\mu -\nu )}{8{\sqrt {-S(\lambda )S(\mu )S(\nu )}}}}\ d\lambda d\mu d\nu }
。
拉普拉斯算子 是
∇
2
Φ
=
4
S
(
λ
)
(
λ
−
μ
)
(
λ
−
ν
)
∂
∂
λ
[
S
(
λ
)
∂
Φ
∂
λ
]
+
4
S
(
μ
)
(
μ
−
λ
)
(
μ
−
ν
)
∂
∂
μ
[
S
(
μ
)
∂
Φ
∂
μ
]
{\displaystyle \nabla ^{2}\Phi ={\frac {4{\sqrt {S(\lambda )}}}{\left(\lambda -\mu \right)\left(\lambda -\nu \right)}}{\frac {\partial }{\partial \lambda }}\left[{\sqrt {S(\lambda )}}{\frac {\partial \Phi }{\partial \lambda }}\right]\ +\ {\frac {4{\sqrt {S(\mu )}}}{\left(\mu -\lambda \right)\left(\mu -\nu \right)}}{\frac {\partial }{\partial \mu }}\left[{\sqrt {S(\mu )}}{\frac {\partial \Phi }{\partial \mu }}\right]}
+
4
S
(
ν
)
(
ν
−
λ
)
(
ν
−
μ
)
∂
∂
ν
[
S
(
ν
)
∂
Φ
∂
ν
]
{\displaystyle +\ {\frac {4{\sqrt {S(\nu )}}}{\left(\nu -\lambda \right)\left(\nu -\mu \right)}}{\frac {\partial }{\partial \nu }}\left[{\sqrt {S(\nu )}}{\frac {\partial \Phi }{\partial \nu }}\right]}
。
其它微分算子,例如
∇
⋅
F
{\displaystyle \nabla \cdot \mathbf {F} }
与
∇
×
F
{\displaystyle \nabla \times \mathbf {F} }
,都可以用椭球坐标表达,只需要将标度因子代入正交坐标 条目内对应的一般公式。
Morse PM, Feshbach H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill. 1953: p. 663.
Zwillinger D. Handbook of Integration. Boston, MA: Jones and Bartlett. 1992: p. 114. ISBN 0-86720-293-9 .
Sauer R, Szabó I. Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. 1967: pp. 101–102.
Korn GA, Korn TM. Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. 1961: p. 176.
Margenau H, Murphy GM. The Mathematics of Physics and Chemistry. New York: D. van Nostrand. 1956: pp. 178–180.
Moon PH, Spencer DE. Ellipsoidal Coordinates (η, θ, λ). Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions corrected 2nd ed., 3rd print ed. New York: Springer Verlag. 1988: pp. 40–44 (Table 1.10). ISBN 0-387-02732-7 .