四氯二(四氢呋喃)合钛(IV)
外观
四氯二(四氢呋喃)合钛(IV) | |
---|---|
英文名 | Tetrachlorobis(tetrahydrofuran)titanium |
别名 | 四氯二(四氢呋喃)合钛 |
识别 | |
CAS号 | 31011-57-1 |
PubChem | 10958563 |
SMILES |
|
InChI |
|
InChIKey | LXWBMENBONGPSB-UHFFFAOYSA-J |
性质 | |
化学式 | C8H16Cl4O2Ti |
摩尔质量 | 333.89 g·mol−1 |
外观 | 黄色固体[1] |
熔点 | 118 °C(391 K)[1] |
溶解性 | 易溶于四氢呋喃[1] |
危险性 | |
GHS危险性符号 | |
GHS提示词 | 危险 |
H-术语 | H228, H314 |
P-术语 | P210, P240, P241, P260, P264, P280, P301+330+331, P303+361+353, P304+340, P305+351+338, P310, P321, P363, P370+378 |
相关物质 | |
其他阴离子 | 四溴二(四氢呋喃)合钛(IV) |
其他阳离子 | 四氯二(四氢呋喃)合锆(IV) 四氯二(四氢呋喃)合铪(IV) |
相关化学品 | 四氯化钛 |
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。 |
四氯二(四氢呋喃)合钛(IV)是一种配位化合物,化学式为C8H16Cl4O2Ti,可简写为TiCl4(THF)2,其中THF为四氢呋喃。它是一种强路易斯酸。[2]
制备
[编辑]四氯二(四氢呋喃)合钛(IV)可由四氯化钛和四氢呋喃在正己烷(或二氯甲烷[3])中反应得到。[4]
- TiCl4 + 2 THF → TiCl4(THF)2
由于该反应是剧烈放热的,一般不在无溶剂条件下反应。[3]
性质
[编辑]四氯二(四氢呋喃)合钛(IV)和镁在四氢呋喃中于氩气保护下反应,可以得到[Ti(MgCl)2(THF)]2:
- 2 TiCl4(THF)2 + 6 Mg + 2 THF → [Ti(MgCl)2(THF)]2 + 2 MgCl2(THF)2
生成的低价钛化合物可以吸收二氧化碳,生成[Ti(OOCH)2MgCl1.5(THF)],它可以进一步和酸反应,生成甲酸,或和碘乙烷反应,生成甲酸乙酯。[5]
它和镁直接在氮气环境中反应,可以得到TiN(MgCl)2(THF),它可以再和碘反应,经ITiN(MgCl)2中间体,生成Ti=N(MgCl)。[2]氯化亚锡也能将其还原,生成TiCl3(THF)3和绿色的[TiCl2(THF)4][SnCl5(THF)]:[6]
- 2 TiCl4(THF)2 + SnCl2 → [trans-TiCl2(THF)4][SnCl5(THF)] + TiCl3(THF)3
四氯二(四氢呋喃)合钛(IV)可以和MgCl2(THF)2(1:2)在THF中反应,析出黄色的[(THF)3Mg(μ-Cl)3Mg(THF)3][TiCl5(THF)]晶体;[7]等摩尔比反应时,生成[(THF)4Mg(μ-Cl)2TiCl4]。[2]
应用
[编辑]四氯二(四氢呋喃)合钛(IV)可以用作TiIV源合成有机钛化合物,如它和1,4-二(三甲基硅基)环辛四烯二锂反应,可以制得夹心化合物Ti{C8H6[Si(CH3)3]2}2;[8]它在THF中被萘钾还原,形成萘基钛阴离子中间体,加入白磷后发生配体取代反应,以制得含五磷唑的钛阴离子[Ti(P5)2]2−。[9]它也可用作金属有机框架材料的后处理(如金属交换)试剂。[10][11]
参考文献
[编辑]- ^ 1.0 1.1 1.2 Kern, R.J. Tetrahydrofuran complexes of transition metal chlorides. Journal of Inorganic and Nuclear Chemistry. 1962, 24 (9): 1105–1109. ISSN 0022-1902. doi:10.1016/0022-1902(62)80255-3 (英语).
- ^ 2.0 2.1 2.2 Sobota, Piotr; Janas, Zofia. Formation of a nitrogen—carbon bond from N2 and CO. Influence of MgCl2 on the N2 reduction process in the system TiCl4/Mg. Journal of Organometallic Chemistry. 1984, 276 (2): 171–176. ISSN 0022-328X. doi:10.1016/0022-328X(84)80628-2 (英语).
- ^ 3.0 3.1 Manxzer, L. E.; Deaton, Joe; Sharp, Paul; Schrock, R. R. 31. Tetragtdrfuran Complexes of Selected Early Transition Metals.: 135–140. 2007. ISSN 1934-4716. doi:10.1002/9780470132524.ch31 (英语).
- ^ Yoshino, Norio; Yoshino, Takeshi. Syntheses and Reactions of Metal Organics. VII. Reactions ofn-Butoxytitanium Chlorides with Saturated Cyclic Ethers. Bulletin of the Chemical Society of Japan. 1972, 45 (10): 3172–3174. ISSN 0009-2673. doi:10.1246/bcsj.45.3172 (英语).
- ^ Jeżowska-Trzebiatowska, B.; Sobota, P. Fixation of molecular carbon dioxide in the system TiCl4-Mg in tetrahydrofuran under mild conditions. Journal of Organometallic Chemistry. 1974, 76 (1): 43–47. ISSN 0022-328X. doi:10.1016/S0022-328X(00)90313-9 (英语).
- ^ Janas, Zofia; Sobota, Piotr; Lis, Tadeusz. Interaction of titanium and tin chlorides in tetrahydrofuran. The X-ray crystal structure of [trans-TiCl2(THF)4]+[SnCl5(THF)]−. Polyhedron. 1988, 7 (24): 2655–2658. ISSN 0277-5387. doi:10.1016/S0277-5387(00)83888-7 (英语).
- ^ Sobota, Piotr; Utko, Jozef; Lis, Tadeusz. Preparation and crystal structure of tri-p-chloro-hexakis(tetrahydro-furan)dimagnesium(II) pentachloro(tetrahydrofuran)titanate(iv). Journal of the Chemical Society, Dalton Transactions. 1984, (9): 2077. ISSN 0300-9246. doi:10.1039/dt9840002077 (英语).
- ^ Cloke, F. Geoffrey N.; Green, Jennifer C.; Hitchcock, Peter B.; Joseph, Stephen C. P.; Mountford, Philip; Kaltsoyannis, Nikolas; McCamley, Andrew. Molecular and electronic structures of bis[1,4-bis(trimethylsilyl)cyclooctatetraene] sandwich complexes of titanium and zirconium. Journal of the Chemical Society, Dalton Transactions. 1994, (19): 2867. ISSN 0300-9246. doi:10.1039/dt9940002867 (英语).
- ^ Urnėžius, E. A Carbon-Free Sandwich Complex [(P5)2Ti]2-. Science. 2002, 295 (5556): 832–834. ISSN 0036-8075. doi:10.1126/science.1067325 (英语).
- ^ Smith, Stefan J. D.; Konstas, Kristina; Lau, Cher Hon; Gozukara, Yesim M.; Easton, Christopher D.; Mulder, Roger J.; Ladewig, Bradley P.; Hill, Matthew R. Post-Synthetic Annealing: Linker Self-Exchange in UiO-66 and Its Effect on Polymer–Metal Organic Framework Interaction. Crystal Growth & Design. 2017, 17 (8): 4384–4392. ISSN 1528-7483. doi:10.1021/acs.cgd.7b00685 (英语).
- ^ Santaclara, Jara G.; Olivos-Suarez, Alma I.; Gonzalez-Nelson, Adrian; Osadchii, Dmitrii; Nasalevich, Maxim A.; van der Veen, Monique A.; Kapteijn, Freek; Sheveleva, Alena M.; Veber, Sergey L.; Fedin, Matvey V.; Murray, Alexander T.; Hendon, Christopher H.; Walsh, Aron; Gascon, Jorge. Revisiting the Incorporation of Ti(IV) in UiO-type Metal–Organic Frameworks: Metal Exchange versus Grafting and Their Implications on Photocatalysis. Chemistry of Materials. 2017, 29 (21): 8963–8967. ISSN 0897-4756. doi:10.1021/acs.chemmater.7b03320 (英语).