跳转到内容

普罗斯数

本页使用了标题或全文手工转换
维基百科,自由的百科全书

普罗斯数是如下形式的数:

其中k是奇数,n是正数,且2n>k

既是普罗斯数又是素数的整数,称为普罗斯素数。到2016年为止,已知最大的普罗斯素数是10223 · 231172165 + 1,由Szabolcs Peter发现,有9383761位。[1]页面存档备份,存于互联网档案馆

例子

[编辑]

最初的几个普罗斯数为:(OEIS数列A080075

P0 = 21 + 1 = 3
P1 = 22 + 1 = 5
P2 = 23 + 1 = 9
P3 = 3 × 22 + 1 = 13
P4 = 24 + 1 = 17
P5 = 3 × 23 + 1 = 25
P6 = 25 + 1 = 33

最初的几个普罗斯素数为:A080076

3513174197113193241257,353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857

普罗斯定理

[编辑]

普罗斯定理是判断普罗斯数是否为素数的方法。 如果p是普罗斯数,那么如果对于某个整数a,有

p是素数。这是一个有实际用途的方法,因为如果p是素数,任何选定的a都有百分之50的概率满足这个关系式。

参见

[编辑]

外部链接

[编辑]