绝对收敛是数学中无穷级数和广义积分的一种性质。一个数项级数或一个积分绝对收敛当且仅当级数的每一项或者积分的函数取绝对值(或范数)后仍然收敛或可积。比如,一个实数项或复数项级数 绝对收敛当且仅当。某个函数的广义积分或瑕积分是绝对收敛的,当且仅当取绝对值或范数后的函数的积分收敛:。一个积分绝对收敛的函数也称为绝对可积函数。
在无穷级数的研究中,绝对收敛性是一项足够强的条件,许多有限项级数具有的性质,在一般的无穷级数不一定满足,只有在绝对收敛的无穷级数也会具有该性质。例如任意重排一个绝对收敛的级数之通项的次序,不会改变级数的和,又如,两个绝对收敛的无穷级数通项的乘积以任何方式排列成的级数和都为原来两个级数和的乘积。收敛但不是绝对收敛的无穷级数或积分被称为条件收敛的。
绝对收敛是建立在实数绝对值、复数的模长以及更一般的,向量的范数概念之上的。绝对值、模长都是范数概念的特例。给定一个向量空间,范数是将中元素映射到非负实数上的一个函数,并且满足以下性质:
- 将且仅将零向量映射到0:
- 齐次性:
- 次可加性:
装备了范数的向量空间被称为赋范向量空间,可以定义距离:这样可以定义上的拓扑结构,从而定义收敛乃至绝对收敛。设有由中元素组成的级数:,则此级数绝对收敛当且仅当由每一项向量的范数构成的正项级数收敛:
当级数的每一项是实数或复数时,对应的是实向量空间和复向量空间,这时对应的范数是实数的绝对值和复数的模长,都写作,所以实数项或复数项的级数绝对收敛,当且仅当由每一项元素的绝对值或模长构成的正项级数收敛:
如果赋范向量空间是完备的(即所谓的巴拿赫空间),那么中绝对收敛的无穷级数必定收敛。反之,如果中绝对收敛的无穷级数必定收敛,那么可以推出是巴拿赫空间。
证明:
假设是完备空间,由中元素组成的绝对收敛的级数。则
因此级数满足柯西性质,即:任意,存在自然数,使得对任何,都有
所以对任意的,级数中的部分的范数:
这说明级数的部分和是柯西序列。因此在完备空间中,级数收敛: