跳转到内容

相关 (概率论)

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自相关矩阵
相关
数学概念、​关系类型
上级分类关系 编辑
所属实体统计学、​概率论 编辑
话题方面统计学 编辑
研究学科统计学 编辑
Stack Exchange标签https://stats.stackexchange.com/tags/correlation 编辑

相关(Correlation),又称为相关性关联,在概率论统计学中,相关显示了两个或几个随机变量之间线性关系的强度和方向。在统计学中,相关的意义是:用来衡量两个变量相对于其相互独立的距离。在这个广义的定义下,有许多根据数据特点用来衡量数据相关性而定义的系数,称作 相关系数。通常使用相关系数来计量这些随机变量协同变化的程度,当随机变量间呈现同一方向的变化趋势时称为正相关,反之则称为负相关

几组(x, y)的点集,以及各个点集中x和y之间的相关系数。我们可以发现相关系数反映的是变量之间的线性关系和相关性的方向(第一排),而不是相关性的斜率(中间),也不是各种非线性关系(第三排)。请注意:中间的图中斜率为0,但相关系数是没有意义的,因为此时变量Y是0

历史

[编辑]

英国生物学家和统计学家弗朗西斯·高尔顿首先提出“相关”这一概念,英国数学家卡尔·皮尔逊在此基础上做出了进一步发展。

各种相关系数

[编辑]

对于不同测量尺度的变量,有不同的相关系数可用:

  • 皮尔逊相关系数(Pearson's r):衡量两个等距尺度等比尺度变量之相关性。是最常见的,也是学习统计学时第一个接触的相关系数。
  • 净相关(英语:partial correlation):在模型中有多个自变量(或解释变量)时,去除掉其他自变量的影响,只衡量特定一个自变量与因变量之间的相关性。自变量和因变量皆为连续变量。
  • 相关比(英语:correlation ratio):衡量两个连续变量之相关性。
  • Phi相关系数(英语:Phi coefficient):衡量两个真正名目尺度的二分变量之相关性。
  • 列联相关系数(英语:contingency coefficient):衡量两个真正名目尺度变量之相关性。
  • 四分相关(英语:tetrachoric correlation):衡量两个人为名目尺度(原始资料为等距尺度)的二分变量之相关性。
  • Kappa一致性系数(英语:K coefficient of agreement):衡量两个名目尺度变量之相关性。
  • 点二系列相关系数(英语:point-biserial correlation):X变量是真正名目尺度二分变量。Y变量是连续变量。
  • 二系列相关系数(英语:biserial correlation):X变量是人为名目尺度二分变量。Y变量是连续变量。

皮尔逊积差系数

[编辑]

数学特征

[编辑]

其中,E数学期望,cov表示协方差标准差

因为,同样地,对于,可以写成

当两个变量的标准差都不为零,相关系数才有定义。从柯西-施瓦茨不等式可知,相关系数的绝对值不超过1。当两个变量的线性关系增强时,相关系数趋于1或-1。当一个变量增加而另一变量也增加时,相关系数大于0。当一个变量的增加而另一变量减少时,相关系数小于0。当两个变量独立时,相关系数为0,但反之并不成立。这是因为相关系数仅仅反映了两个变量之间是否线性相关。比如说,X是区间[-1,1]上的一个均匀分布的随机变量。Y = X2.那么Y是完全由X确定。因此YX不独立,但相关系数为0。或者说他们是不相关的。当YX服从联合正态分布时,其相互独立和不相关是等价的。

当一个或两个变量带有测量误差时,他们的相关性就受到削弱,这时,“反衰减”性(disattenuation)是一个更准确的系数。

几何特征

[编辑]

对于居中的数据来说(何谓居中?也就是每个数据减去样本均值,居中后它们的平均值就为0),相关系数可以看作是两个随机变量中得到的样本集向量之间夹角的cosine函数。一些实际工作者更喜欢用非居中的相关系数(与皮尔逊系数不相兼容)。看下面的例子中有一个比较。例如,假设五个国家的国民生产总值分别是1、2、3、5、8(单位10亿美元),又假设这五个国家的贫困比例分别是11%、12%、13%、15%、18%。则我们现在有两个有序的包含5个元素的向量x、y:x =(1, 2, 3, 5, 8)、 y =(0.11, 0.12, 0.13, 0.15, 0.18) 使用一般的方法来计算向量间夹角(参考数量积),未居中的相关性系数如下:

上面的数据实际上是故意选择了一个完美的线性关系:y = 0.10 + 0.01 x。因此皮尔逊相关系数应该就是1。把数据居中(x中数据减去E (x) = 3.8,y中数据减去E (y) = 0.138)后得到:x =(−2.8, −1.8, −0.8, 1.2, 4.2)、y =(−0.028, −0.018, −0.008, 0.012, 0.042),由此得到了预期结果:

统计学上的相关

[编辑]

样本相关系数

[编辑]

对于样本对,相关系数的计算过程可表示为:将每个变量都通过减去平均值、再除以校正标准差后转化为标准单位,乘积的平均值,再经过贝塞尔校正英语Bessel's correction即为相关系数[1]

两个变量的关系可以直观地用散点图表示,当其紧密地群聚于一条直线的周围时,变量间存在强相关[2]

一个散点图可以用五个统计量来概括:所有值的平均数,所有值的校正标准差(即样本标准差),所有值的平均数,所有值的校正标准差,相关系数

其中:


那么:

或写成:

,

其中贝塞尔校正英语Bessel's correction

参考文献

[编辑]
  1. ^ David Freedman; Robert Pisani, Roger Purves. Statistics. Norton & Company. 1998: 148. ISBN 9780393960433. 3 (英语). 
  2. ^ David Freedman; Robert Pisani, Roger Purves. Statistics. Norton & Company. 1998: 156. ISBN 9780393960433. 3 (英语). 

参见

[编辑]