截角正一百二十胞体
外观
截角正一百二十胞体 | |
---|---|
类型 | 均匀多胞体 |
识别 | |
名称 | 截角正一百二十胞体 |
参考索引 | 36 |
数学表示法 | |
考克斯特符号 | |
施莱夫利符号 | t0,1{5,3,3} |
性质 | |
胞 | 10 600 (3.3.3) 120 (3.10.10) |
面 | 30 2400 {3} 720 {10} |
边 | 4800 |
顶点 | 2400 |
组成与布局 | |
顶点图 | 棱锥 |
对称性 | |
考克斯特群 | H4, [3,3,5], order 14400 |
特性 | |
convex | |
截角正一百二十胞体是均匀多胞体之一,由截断正一百二十胞体的每一个角来创造。
截角正一百二十胞体有120个截角十二面体和600个正四面体。它有3120个面,2400个三角形和720个十边形。它有4800个面:3600个由三个截角十二面体共享,1200个由两个截角十二面体和一个正四面体共享。每条棱周围有3个截角十二面体和一个正四面体。它的顶点图是一个等边三角形棱锥。
投影
[编辑]H4 | - | F4 |
---|---|---|
[30] |
[20] |
[12] |
H3 | A2 / B3 / D4 | A3 / B2 |
[10] |
[6] |
[4] |
展开图 |
球极平面投影的中间部分 (对着一个截角十二面体胞) |
球极平面投影 |
参考文献
[编辑]- Kaleidoscopes: Selected Writings of H.S.M. Coxeter (页面存档备份,存于互联网档案馆), editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- Four-dimensional Archimedean Polytopes (页面存档备份,存于互联网档案馆) (German), Marco Möller, 2004 PhD dissertation [1] (页面存档备份,存于互联网档案馆) m58 (页面存档备份,存于互联网档案馆) m59 (页面存档备份,存于互联网档案馆) m53 (页面存档备份,存于互联网档案馆)
- Convex uniform polychora based on the hecatonicosachoron (120-cell) and hexacosichoron (600-cell) - Model 36, 39, 41, George Olshevsky.
- Klitzing, Richard. 4D uniform polytopes (polychora). bendwavy.org. o3o3x5x - thi, o3x3x5o - xhi, x3x3o5o - tex
- Four-Dimensional Polytope Projection Barn Raisings (页面存档备份,存于互联网档案馆) (A Zometool construction of the truncated 120-cell), George W. Hart