摘要
授權條款
我,本作品的著作權持有者,決定用以下授權條款發佈本作品:
- 您可以自由:
- 分享 – 複製、發佈和傳播本作品
- 重新修改 – 創作演繹作品
- 惟需遵照下列條件:
- 姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
- 相同方式分享 – 如果您利用本素材進行再混合、轉換或創作,您必須基於如同原先的相同或兼容的條款,來分布您的貢獻成品。
https://creativecommons.org/licenses/by-sa/2.5CC BY-SA 2.5 Creative Commons Attribution-Share Alike 2.5 truetrue
Source
This image and the others in the same series (2, 3, 4) were generated from the MetaPost code presented below. The code is released under the same license as the images themselves.
% shell-diag.mp
% A diagram illustrating the derivation of Newton's shell theorem. To be
% processed with MetaPost.
color bandshade, fillshade;
bandshade = 0.7 [blue, white];
fillshade = 0.9 white;
numeric dotsize, deg;
dotsize = 5 bp;
deg = length( fullcircle )/360;
freelabeloffset := 3/4 freelabeloffset;
labeloffset := 2 labeloffset;
def dot( expr P ) =
fill fullcircle scaled dotsize shifted P withcolor black;
enddef;
def draw_circle( expr R, stroke ) =
save p;
pen p;
p = currentpen;
pickup p scaled stroke;
draw fullcircle scaled 2R;
pickup p;
enddef;
vardef anglebetween( expr a, b, rad, str ) =
save endofa, endofb, common, curve, where;
pair endofa, endofb, common;
path curve;
numeric where;
endofa = point length( a ) of a;
endofb = point length( b ) of b;
if round point 0 of a = round point 0 of b:
common = point 0 of a;
else:
common = a intersectionpoint b;
fi;
where = turningnumber( common--endofa--endofb--cycle );
curve = (unitvector( endofa - common ){(endofa - common) rotated (90 * where)} ..
unitvector( endofb - common )) scaled rad shifted common;
draw thefreelabel( str, point 1/2 of curve, common ) withcolor black;
curve
enddef;
def draw_angle( expr a, b, rad, str ) =
begingroup
save p;
pen p;
p = currentpen;
pickup p scaled 1/2;
draw anglebetween( a, b, rad, str );
pickup p;
endgroup
enddef;
def label_line( expr a, b, disp, str ) =
begingroup
save mid, opp;
pair mid, opp;
mid = 1/2 [a, b];
opp = -disp rotated (angle( b - a ) - 90) shifted mid;
draw thefreelabel( str, mid, opp );
draw a -- b;
endgroup
enddef;
def draw_thinshell( expr R, r, theta, dtheta, thetarad, phirad ) =
begingroup
save M, m;
pair M, m;
M = (0, 0);
m = (r, 0);
save circ;
path circ;
circ = fullcircle scaled 2R;
save thetapt, dthetapt;
pair thetapt, dthetapt;
thetapt = point (theta * deg) of circ;
dthetapt = point ((theta + dtheta) * deg) of circ;
save upper, lower, band;
path upper, lower, band;
upper = subpath (0, 4) of circ;
lower = subpath (4, 8) of circ;
band = buildcycle( upper, (xpart thetapt, R) -- (xpart thetapt, -R),
lower, (xpart dthetapt, R) -- (xpart dthetapt, -R) );
% draw figures
save p;
pen p;
p = currentpen;
pickup p scaled 1/2;
fill band withcolor bandshade;
draw band;
pickup p;
save near, far;
pair near, far;
if theta < 90:
near = 3/4[ulcorner band, llcorner band];
far = right shifted near;
else:
near = 3/4[urcorner band, lrcorner band];
far = left shifted near;
fi;
draw thefreelabel( btex $dM$ etex, near, far );
dot( M );
%label.llft( btex $M$ etex, M );
dot( m );
label.lrt( btex $m$ etex, m );
draw M -- thetapt;
label_line( M, m, right, btex $r$ etex );
label_line( m, thetapt, right, btex $s$ etex );
if R <> r:
label_line( M, dthetapt, left, btex $R$ etex );
else:
draw M -- dthetapt;
fi;
draw_angle( m -- M, m -- thetapt, phirad, btex $\phi$ etex );
draw_angle( M -- m, M -- thetapt, thetarad, btex $\theta$ etex );
draw_angle( M -- thetapt, M -- dthetapt, R, btex $d\theta$ etex );
endgroup
enddef;
def draw_thickshell( expr Ra, Rb, r ) =
begingroup
save m;
pair m;
m = (r, 0);
fill fullcircle scaled 2Rb withcolor fillshade;
fill fullcircle scaled 2r withcolor bandshade;
unfill fullcircle scaled 2Ra;
dot( origin );
dot( m );
label.lrt( btex $m$ etex, m );
label_line( origin, m, right, btex $r$ etex );
draw_circle( Rb, 2 );
if Ra > 0:
draw_circle( Ra, 2 );
label_line( origin, dir( 100 ) scaled Rb, left, btex $R_b$ etex );
label_line( origin, dir( 80 ) scaled Ra, right, btex $R_a$ etex );
else:
label_line( origin, dir( 90 ) scaled Rb, left, btex $R_b$ etex );
fi;
endgroup
enddef;
% Thin shell, r > R
beginfig(1)
numeric R;
R = 1 in;
draw_thinshell( R, 3R, 50, 15, 1/4 in, 3/4 in );
draw_circle( R, 2 );
endfig;
% Thin shell, r < R
beginfig(2)
numeric R;
R = 1 in;
draw_thinshell( R, 0.7R, 125, 15, 1/8 in, 1/3 in );
draw_circle( R, 2 );
endfig;
% Thick shell
beginfig(3)
numeric Ra, Rb, r;
Ra = 0.8 in;
Rb = 1.3 in;
r = 1 in;
draw_thickshell( Ra, Rb, r );
endfig;
% Solid sphere
beginfig(4)
numeric Ra, Rb, r;
Ra = 0;
Rb = 1.3 in;
r = 1 in;
draw_thickshell( Ra, Rb, r );
endfig;
end