跳至內容

File:Line integral of scalar field.gif

頁面內容不支援其他語言。
這個檔案來自維基共享資源
維基百科,自由的百科全書

Line_integral_of_scalar_field.gif (400 × 300 像素,檔案大小:580 KB,MIME 類型:image/gif、​循環、​61 畫格、​39秒)


摘要

描述
English: Line integral of a scalar field, f. The area under the curve C, traced on the surface defined by z = f(x,y), is the value of the integral. See full description.
فارسی: انتگرال خطی یک میدان اسکالر f. مقدار انتگرال مساحت زیر منحنی C تعریف شده توسط سطح (z = f(x,y است.
Français : L′intégrale curviligne d′un champ scalaire, f. L′aire sous la courbe C, tracée sur la surface définie par z = f(x,y), est la valeur de l'intégrale.
Italiano: Integrale di linea di un campo scalare, f. Il valore dell'integrale è pari all'area sotto la curva C, tracciata sulla superficie definita da z = f(x,y).
Русский: Иллюстрация криволинейного интеграла первого рода на скалярном поле.
日期
來源 自己的作品
作者 Lucas Vieira
授權許可
(重用此檔案)
Public domain 我,此作品的版權所有人,釋出此作品至公共領域。此授權條款在全世界均適用。
這可能在某些國家不合法,如果是的話:
我授予任何人有權利使用此作品於任何用途,除受法律約束外,不受任何限制。
其他版本

評價

圖像 of the year
圖像 of the year
Featured 圖像

維基共享資源維基百科


該圖片為維基共享資源的特色圖片(特色圖片)。它被認定為最佳圖像之一。

 該圖片為英文維基百科的特色圖片(Featured pictures)。它被認定為最佳圖像之一。
 該圖片為波斯文維基百科的特色圖片(نگاره‌های برگزیده)。它被認定為最佳圖像之一。

如果您還有可以在合適授權條款下發表的相似品質的圖像,歡迎您上傳標註授權條款提名之

Full description (English)

A scalar field has a value associated to each point in space. Examples of scalar fields are height, temperature or pressure maps. In a two-dimensional field, the value at each point can be thought of as a height of a surface embedded in three dimensions. The line integral of a curve along this scalar field is equivalent to the area under a curve traced over the surface defined by the field.

In this animation, all these processes are represented step-by-step, directly linking the concept of the line integral over a scalar field to the representation of integrals familiar to students, as the area under a simpler curve. A breakdown of the steps:

  1. The color-coded scalar field f and a curve C are shown. The curve C starts at a and ends at b
  2. The field is rotated in 3D to illustrate how the scalar field describes a surface. The curve C, in blue, is now shown along this surface. This shows how at each point in the curve, a scalar value (the height) can be associated.
  3. The curve is projected onto the plane XY (in gray), giving us the red curve, which is exactly the curve C as seen from above in the beginning. This is red curve is the curve in which the line integral is performed. The distances from the projected curve (red) to the curve along the surface (blue) describes a "curtain" surface (in blue).
  4. The graph is rotated to face the curve from a better angle
  5. The projected curve is rectified (made straight), and the same transformation follows on the blue curve, along the surface. This shows how the line integral is applied to the arc length of the given curve
  6. The graph is rotated so we view the blue surface defined by both curves face on
  7. This final view illustrates the line integral as the familiar integral of a function, whose value is the "signed area" between the X axis (the red curve, now a straight line) and the blue curve (which gives the value of the scalar field at each point). Thus, we conclude that the two integrals are the same, illustrating the concept of a line integral on a scalar field in an intuitive way.

說明

添加單行說明來描述出檔案所代表的內容

在此檔案描寫的項目

描繪內容

檔案來源 Chinese (Taiwan) (已轉換拼寫)

檔案歷史

點選日期/時間以檢視該時間的檔案版本。

日期/時間縮⁠圖尺寸使用者備⁠註
目前2012年8月14日 (二) 16:43於 2012年8月14日 (二) 16:43 版本的縮圖400 × 300(580 KB)LucasVBUnoptimized. Sticking with local palettes for better color resolution per frame. Added bands of color to the field instead of a smooth gradient. Overall, it should look sharper, though the file will be bigger. Worth it, I say!
2012年7月25日 (三) 12:24於 2012年7月25日 (三) 12:24 版本的縮圖400 × 300(328 KB)LucasVBAlternative illustration of the "straightening" of the curve. It should convey the concept better than the previous one, which may be interpreted as a mere projection. Also, changed to pattern dithering. Seems to look better, and file is smaller even t...
2012年7月24日 (二) 16:59於 2012年7月24日 (二) 16:59 版本的縮圖400 × 300(337 KB)LucasVB{{Information |Description= |Source={{own}} |Date=2012-07-24 |Author= Kieff |Permission={{PD-self}} |other_versions= }}

全域檔案使用狀況

以下其他 wiki 使用了這個檔案:

檢視此檔案的更多全域使用狀況