跳转到内容

File:Integer multiplication by FFT.svg

页面内容不支持其他语言。
这个文件来自维基共享资源
维基百科,自由的百科全书

原始文件 (SVG文件,尺寸为666 × 580像素,文件大小:79 KB)


摘要

描述
English: A demonstration of an integer multiplication based on fast Fourier transforms (FFTs) using a number theoretic transform in the finite field of order 337, choosing 85 as an 8th root of unity (since the input vectors are of length 8). Base 10 is used (normally a power of 2 would used, but 10 is convenient for demonstration), and this technique is overkill for integers of this size (long multiplication would be superior). Because the inputs have 4 digits and the maximum product of two digits in base 10 is 92, the base was chosen as the first prime p greater than 4×92 = 324 where 8 is invertible in the integers modulo p (in this example any suitable base > 61, such as 73, would suffice, but we don't know that a priori). The computation at the top shows how the same acyclic convolution can be computed naively by "long multiplication without carrying," showing the relationship to multiplication. The computation in the lower right shows recombination/carrying of the result vector by (decimal) shifts and adds to obtain the final integer result. Note that all recursive multiplications are of smaller, 3-digit integers. Values are all accurate and were computed using the following Mathematica code:
NTT[x_, b_, r_] := 
 Table[Mod[Sum[x[[n + 1]]*PowerMod[r, k*n, b], {n, 0, Length[x] - 1}],
    b], {k, 0, Length[x] - 1}]

INTT[x_, b_, r_] := Block[{ninverse},
  ninverse = PowerMod[Length[x], -1, b]; 
  Table[Mod[
    ninverse*
     Sum[x[[n + 1]]*PowerMod[r, (Length[x] - n)*k, b], {n, 0, 
       Length[x] - 1}], b], {k, 0, Length[x] - 1}]]

x = {4, 3, 2, 1, 0, 0, 0, 0}; y = {8, 7, 6, 5, 0, 0, 0, 0}; b = 337; r = 85;
NTT[x, b, r]
NTT[y, b, r]
Mod[NTT[x, b, r]*NTT[y, b, r], b]
INTT[Mod[NTT[x, b, r]*NTT[y, b, r], b], b, r]
1234*5678
日期
来源 自己的作品
作者 Dcoetzee

许可协议

我,本作品著作权人,特此采用以下许可协议发表本作品:
Creative Commons CC-Zero 本作品采用知识共享CC0 1.0 通用公有领域贡献许可协议授权。
采用本宣告发表本作品的人,已在法律允许的范围内,通过在全世界放弃其对本作品拥有的著作权法规定的所有权利(包括所有相关权利),将本作品贡献至公有领域。您可以复制、修改、传播和表演本作品,将其用于商业目的,无需要求授权。

说明

添加一行文字以描述该文件所表现的内容

此文件中描述的项目

描绘内容

文件来源 简体中文(已转写)

上传者的原创作品 简体中文(已转写)

image/svg+xml

文件历史

点击某个日期/时间查看对应时刻的文件。

日期/时间缩⁠略⁠图大小用户备注
当前2011年12月17日 (六) 10:372011年12月17日 (六) 10:37版本的缩略图666 × 580(79 KB)Dcoetzee

以下2个页面使用本文件:

全域文件用途